

Ing. Jacopo TACCINI

■雑誌業■ via del Rio, 2 - 56025 PONTEDERA PI

e-mail: jacopo.taccini@sta-eng.it Cell. +39.328.4564561 PEC: jacopo.taccini@ingpec.eu Curriculum: http://www.l2l.it/JTaccini

RELAZIONE TECNICA

Sommario

Premessa	5
I bacini idraulici di interesse	
Pugnano Molina di Quosa	
Rigoli	
S.Giuliano	10
Asciano	
Asciano	
Piana dell'Arno	
Canale Demaniale	
Grandezze geomorfologiche	17
Stima del tempo di corrivazione	19
Scelta del tempo di ritorno	21
Definizione del regime pluviometrico	22
Ietogramma di progetto	25
Quantificazione della pioggia netta	26
Trasformazione afflussi-deflussi	34
Idrogramma Unitario SCS	34
Idrogramma Unitario di Clark	34
Idrogrammi di njena indagati	36

PREMESSA

La presente relazione idrologica ha come scopo la determinazione degli idrogrammi di piena e le relative portate massime attese alle sezioni di chiusura dei vari bacini che sono stati analizzati nel presente studio di supporto alla redazione del Piano Operativo Comunale di San Giuliano Terme.

I suddetti idrogrammi sono determinati mediante l'implementazione di appositi modelli idrologici redatti con il software HEC-HMS sviluppato dall'Hydrologic Engineering Center dell'U.S. Army Corps of Engineers. Nelle analisi sono stati considerati i tempi di ritorno trentennale TR30 e duecentennale TR200, valutati per diverse durate di pioggia comprese nelle 24h differenziate in funzione delle caratteristiche del bacino analizzato.

Si descrivono allora gli approcci di analisi adottati per i diversi bacini di studio ed i parametri di calcolo con i quali sono ottenuti gli idrogrammi riportati in calce.

I BACINI IDRAULICI DI INTERESSE

San Giuliano Terme nasce a sud dei Monti Pisani a circa 7 km da Pisa e si estende tra i fiumi Arno a est e Serchio ad ovest. Tra i principali corsi d'acqua del territorio comunale vi sono il Serchio, il Fiume Morto ed il fosso del Mulino, conosciuto anticamente con il nome di Fosso di Ripafratta e oggi più comunemente come Fosso Demaniale.

Il territorio comunale presenta una escursione altimetrica complessiva di 830 m s.l.m., di cui il minimo è di 1 metro sul livello del mare. Infatti l'intero territorio presenta sia zone montane che balneari, anche se l'unico accesso al mare è interno al Parco naturale di Migliarino, San Rossore e Massaciuccoli, quindi totalmente privo di attrezzature per i bagnanti e interdetto alla maggior parte delle persone.

Il Comune può quindi essere geomorfologicamente suddiviso in due zone altamente differenziate: la prima posta più ad est a carattere fortemente collinare presenta pendenze molto elevate ed è stata soggetta in passato di importanti cave di marmo impiegato per l'edificazione di molte opere Pisane. Fu proprio per agevolare il trasporto dei materiali edilizi da San Giuliano che, in occasione della costruzione delle mura di Pisa, fu scavato un canale (l'odierno Canale Demaniale) che originariamente alimentato dalle acque dell'Ozzeri consentiva il traporto fluviale dei marmi estratti. Solo successivamente il Canale Demaniale fu collegato al fiume Serchio che ne assicura il deflusso minimo vitale.

La seconda zona è invece costituita da vaste pianure coltivate, con sparsi agglomerati edificati, ed è caratterizzata da numerose ed importanti opere di bonifica e drenaggio delle acque.

Il presente studio ha analizzato primariamente i bacini ed i relativi corsi d'acqua della zona collinare che interessassero anche marginalmente le principali aree edificate poste alle pendici collinari. Lo studio si è proteso poi all'analisi di un'area pianeggiante (denominata in seguito Piana dell'Arno) compresa tra il Fiume Morto, il Canale Demaniale e il Fiume Arno, ha analizzato il Canale Demaniale ed infine un piccolo fosso di guardia posto lungo il tracciato della ferrovia nella frazione di Gello.

I risultati delle analisi svolte sono tali da coinvolgere, con le esondazioni determinate dall'analisi idraulica, anche altre frazioni non indagate direttamente perché non coinvolte da corsi d'acqua oggetto d'analisi, o come spiegato nella relazione generale sono già interessate da importanti battenti idraulici di esondazione dovuti al Serchio. I risultati delle analisi sono comunque riportati interamente, tali cioè da coinvolgere tutto il territorio Comunale.

Si riportano allora nei paragrafi seguenti le frazioni (perimetro UTOE linea magenta) ed i relativi corsi d'acqua (linea ciano) per i quali è stata sviluppata l'analisi. Ove possibile i vari bacini sono stati perimetrati con metodologia GIS a partire dalla base cartografica di tipo lidar 1:2000 1x1m messa a disposizione dalla Regione Toscana sulla propria pagina web Geoscopio WGS. Dove tale cartografia non è risultata disponibile lo studio si è avvalso della CTR 1:2000. Infine i bacini così individuati, nonché i tracciati dei corsi d'acqua, sono stati riscontrati con quanto messo a disposizione dall'Ufficio dei Fiumi e dei Fossi.

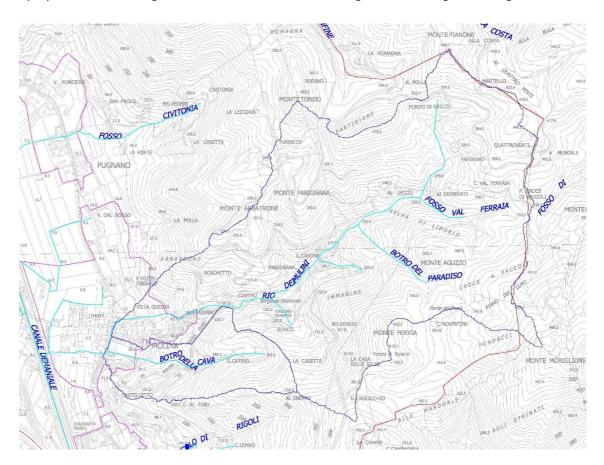
I bacini sono individuati a linea blu nelle immagini riportate a seguire. Infine a linea rossa è individuato il confine Comunale

Tutte le analisi idrologiche e idrauliche svolte per il presente studio sono state supportate inoltre da ampie e attente analisi dei luoghi volte a verificare l'aderenza dei modelli alle reali caratteristiche del territorio, facendo della conoscenza del territorio il principale punto di forza del presente studio.

Pugnano

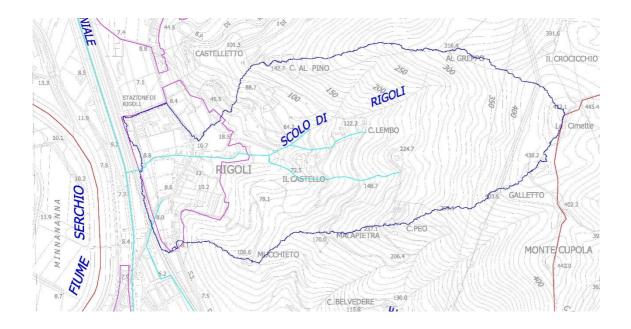
La frazione di Pugnano è solcata da un piccolo corso d'acqua dalle caratteristiche spiccatamente torrentizie, che raccoglie le acque dalla collina soprastante, con elevata pendenza di fondo che improvvisamente si riduce al suo ingresso nell'abitato. Da lì in poi il corso d'acqua, intubato in un primo tratto, prosegue pensile sulle campagne, sottopassa il rilevato ferroviario e recapita nel Canale Demaniale. In corrispondenza del cambio di pendenza di fondo il fosso risulta tombato al di sotto della strada statale dell'Abetone e del Brennero, e poi sotto una abitazione. Il tombamento è decisamente sottodimensionato e facilmente soggetto ad intasamento. Per tale motivo si è scelto di chiudere in tal punto la sezione di calcolo del bacino, non ricevendo acque nel tratto pensile. Le portate così determinate saranno successivamente sparse sul territorio secondo una modellazione idraulica bidimensionale chiusa cautelativamente al rilevato ferroviario supposto impermeabile viste le esique dimensioni degli attraversamenti.

Molina di Quosa

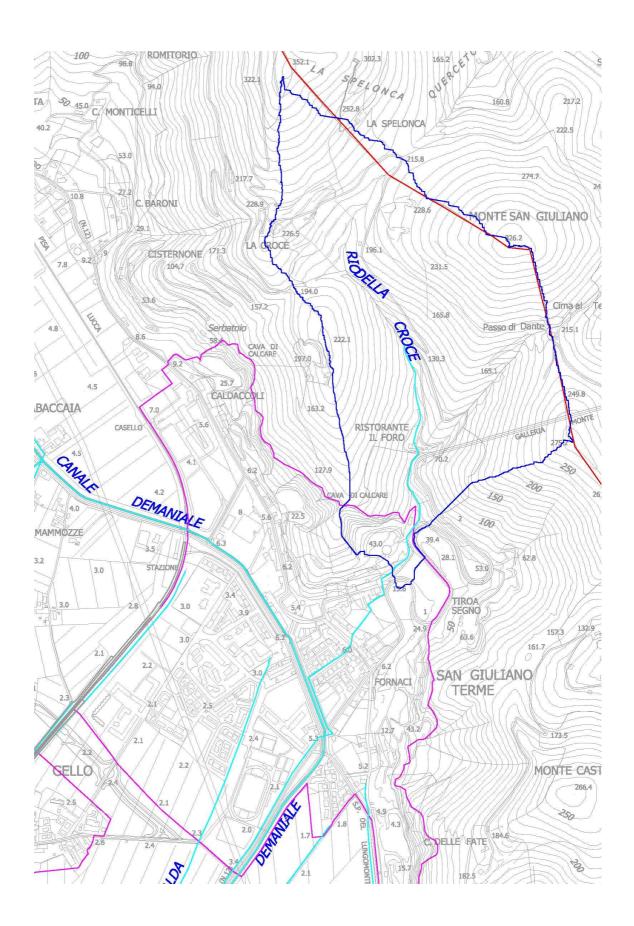

L'abitato di Molina di Quosa è attraversato da due corsi d'acqua collinari che si riuniscono in un solo alveo nel loro tratto terminale, giunti da un importante tombamento realizzato al di sotto del percorso pedonale lungo la S.S. dell'Abetone e del Brennero. I due corsi d'acqua caratterizzati inizialmente da forti pendenze di fondo, percorrono alcune proprietà private che ne impediscono l'ispezione e la manutenzione.

Il tombamento presenta la sezione di valle di dimensioni ridotte e restituisce le acque ad un alveo incassato e arginato ricevendo anche le fognature pluviali della strada. Visto il percorso tortuoso lungo cui si svolge il tombamento e la sua conseguente predeterminazione all'intasamento si è scelto di ridurre cautelativamente l'idrogramma di piena di ciascuno dei due corsi d'acqua di 1.5 mc/s, ipotizzando così una riduzione del 50% della sezione di valle del tombamento dovuta ad ostruzioni e schematizzata come luce a battente. Tale riduzione risulta comunque trascurabile nei riguardi dei valori di portata dell'idrogramma, bensì permette di ridurre i volumi esondati nelle fasi iniziale e finale, tenendo conto quindi della capacità di deflusso del tombamento.

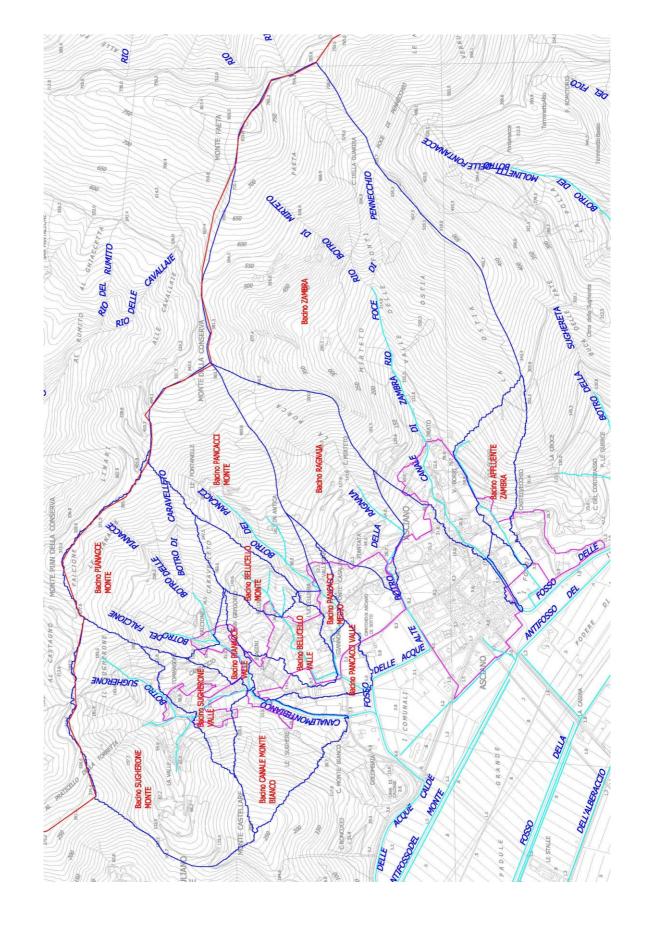
La restante parte dell'idrogramma è stata inserita all'interno di una modellazione bidimensionale che ne determina la propagazione sulle aree limitrofe. Anche in questo caso il rilevato ferroviario è ritenuto impermeabile anche in osservanza della natura arginata del corso d'acqua che impedisce il rientro in alveo delle esondazioni.


I due bacini sono stati perciò chiusi alle rispettive sezioni poste in corrispondenza della S.S.

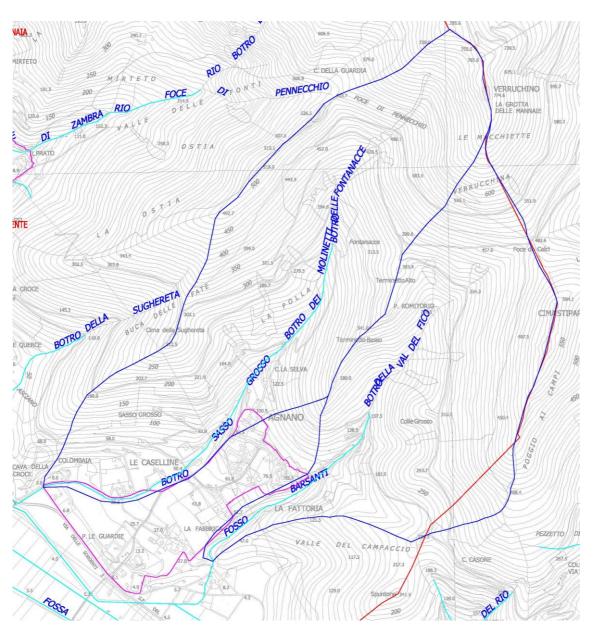
Nell'analisi sono state indagate alcune durate di pioggia sino ad individuare quella in corrispondenza della quale si verifica il sormonto del rilevato ferroviario. Tale scelta è stata riproposta anche nei riguardi delle modellazioni relative agli abitati di Pugnano e Rigoli.


<u>Rigoli</u>

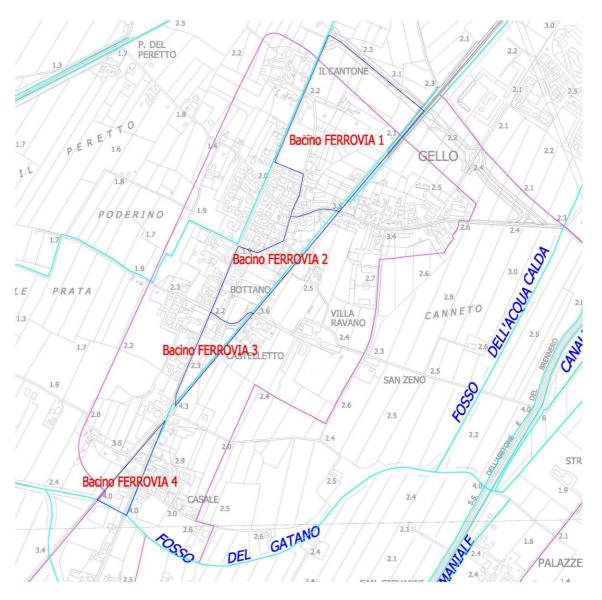
L'abitato di Rigoli sorge all'interno di una antica conoide alluvionale. Il corso d'acqua che interessa la frazione, lo Scolo di Rigoli, mantiene caratteristiche fortemente torrentizie sino all'ingresso nella conoide, in corrispondenza della quale l'alveo scompare e si individuano unicamente alcune successioni di caditoie e tratti tombati. La conoide è stata terrazzata e coltivata ad uliveto e, fatta eccezione per un breve tratto lungo il quale il tombamento torna alla luce nei pressi di una abitazione posta internamente alla conoide, l'alveo riaffiora molto più a valle con sezione decisamente poco pronunciata. Anche in questo caso, perciò, a favore di sicurezza è stato trascurato il contributo al deflusso offerto dal tombamento e dalle griglie facilmente otturabili, spandendo le portate idrauliche provenienti dal bacino su tutta la conoide. In questo caso è risultato opportuno collocare la sezione di chiusura del bacino in corrispondenza del rilevato ferroviario, tale da considerare anche il contributo offerto dalle precipitazioni interessanti la zona valliva.


S.Giuliano

Anche per quanto riguarda il Rio della Croce che interessa l'abitato di San Giuliano si è scelto di determinare il bacino idrografico chiuso alla sezione di imbocco dello stesso in un lungo tratto tombato che, a partire dall'Anfiteatro di San Giuliano raggiunge il Canale Demaniale in corrispondenza delle Terme, lo affianca sino all'incrocio semaforizzato di Via Statale, e qui lo sottopassa immettendosi in un fosso parallelo al Canale Demaniale, e che solo successivamente sfiora in parte nel Fosso del Gatano. Analogamente ai casi già analizzati, l'idrogramma così ottenuto è stato immesso in un modello bidimensionale che ne simula la propagazione sul territorio.


Asciano

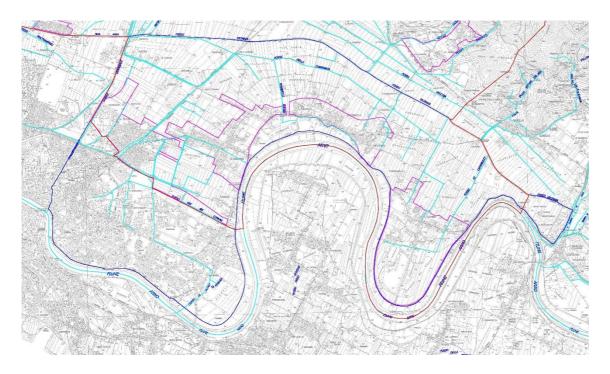
La frazione di Asciano risulta interessata da numerosi corsi d'acqua aventi caratteristiche geometriche significativamente differenti tra loro. Vista anche la complessità dei corsi d'acqua da analizzare, con caratteristiche variabili anche longitudinalmente, si è scelto di analizzarli individualmente, perimetrando un certo numero di bacini tali da rappresentare al meglio il reale apporto idrico. Caso per caso è stata scelta la condizione di valle per ciascun modello idraulico, come opportunamente descritto nella relativa relazione.



Asciano

Asciano risulta l'unica frazione non edificata all'interno di una valle, ma piuttosto in corrispondenza di un displuvio. La frazione risulta così costeggiata da due corsi d'acqua anche questi a carattere torrentizio. Il lato sud-est dell'UTOE è costeggiato dal Fosso Barsanti il cui alveo risulta decisamente incassato, e per il quale è stato perciò sufficiente svolgere una verifica idraulica di tipo steadyflow, mentre sul lato nord-ovest scorre il Botro del Sasso Grosso che presenta una sezione molto ampia per gran parte del suo tracciato, a dispetto di un tombamento decisamente insufficiente, ancorchè mal manutenuto, in corrispondenza dell'attraversamento di via delle sorgenti.

L'abitato di Gello risulta interessato da più corsi d'acqua con caratteristiche di pianura, assimilabili a canali di bonifica. Tra questi, in accordo con gli Uffici del Genio Civile di Lucca, si è scelto di analizzare un piccolo fosso di guardia posto a fianco del rilevato ferroviario. Il bacino afferente a tale fosso risulta sostanzialmente modificato dai recenti interventi di realizzazione del nuovo sottopasso alla ferrovia che collega via statale 12 a via Ulisse Dini Gello, ed è stato suddiviso in 4 differenti porzioni.


Piana dell'Arno

Per quanto riguarda la porzione di territorio denominata in precedenza Piana dell'Arno, vista la sua enorme estensione ed il gran numero di fossi, canali e corsi d'acqua che si articolano all'interno, causa principalmente la scarsità di dati reperibili e le finalità del presente studio, in accordo con l'Ufficio del Genio Civile di Lucca, è stato sviluppato un modello speditivo di analisi delle aree a rischio. Il modello studiato ad hoc prescinde dall'analisi più squisitamente idraulica

impiegata per tutti gli altri corsi d'acqua studiati, bensì è volto ad individuare le aree morfologicamente depresse che, in una situazione transitoria derivante da un evento pluviometrico, sono maggiormente soggette ad allagamento. Come vedremo nell'analisi idraulica, infatti, il modello impiegato non si limita ad individuare le aree più depresse, trascurando i possibili accumuli posti a quote maggiori, ma simula la reale distribuzione della pioggia all'interno dell'area, individuando anche gli effetti transitori della distribuzione pluviometrica, non soltanto quelli statici.

Dal punto di vista strettamente idrologico per tale area l'analisi svolta è indipendente dal modello idraulico impiegato, tuttavia è stato sufficiente determinarne lo ietogramma netto. Il bacino sotto riportato ha quindi l'unico scopo di perimetrare l'area così analizzata, non quello di determinarne l'idrogramma.

L'area indagata con tale metodologia è racchiusa tra le arginature del Fiume Arno a sud e il tracciato del Fiume Morto a nord, tra il tracciato del Canale demaniale ad ovest e le arginature dello Zambra di Calci ad est. Per motivi di uniformità di analisi, sono state ricomprese nel modello anche porzioni di territorio esterne ai confini Comunali.

Canale Demaniale

Il territorio comunale di San Giuliano è poi attraversato in direzione nord – sud da un corso d'acqua artificiale denominato inizialmente Fosso dei Mulini e più recentemente Canale Demaniale. Esso raccoglie una portata minima necessaria ad assicurare il deflusso minimo vitale derivata dal Fiume Serchio, i bacini di Ripafratta, Pugnano, Colognole, Molina di Quosa e Rigoli, e conduce le sue acque, attraversando prima la pianura del Comune e poi entrando in Pisa, sino a riversarsi in Arno in corrispondenza di Ponte della Fortezza.

Per quanto riguarda l'analisi idrologica relativa al modello idraulico del Canale Demaniale si rimanda integralmente a quanto modellato dalla società H.S. Ingegneria S.r.I. con sede in Via Bonistalli 12, 50053 Empoli (FI), per conto del CONSORZIO DI BONIFICA 4 BASSO VALDARNO.

Si riporta di seguito l'individuazione planimetrica dei bacini analizzati dal suddetto studio.

Viste le diverse finalità per le quali è stato studiato il modello fornito, si è reso unicamente necessario (idrologicamente parlando) estendere le durate di pioggia indagate sino alle 24h, mantenendo inalterato ogni altro parametro idrologico.

Grandezze geomorfologiche

Si riportano ora alcune grandezze geomorfologiche dei bacini analizzati.

- Area è espressa in kmg
- Hmax è l'altitudine massima del bacino in m.s.l.m.m
- Hmin è l'altitudine minima del bacino in m.s.l.m.m in corrispondenza della sezione di chiusura
- Hmedia è l'altitudine media pesata areale del bacino rispetto alla sezione di chiusura espressa in m
- i_v è la pendenza media pesata aerale del bacino espressa in %
- i è la pendenza media dell'alveo espressa in %
- L è la lunghezza del corso d'acqua in km
- Lmax è la lunghezza del percorso idraulico più lungo in km

Nome del bacino	UTOE riferimento	Area	Hmax	Hmin	Hmedia	İv	i	L	Lmax
Civitonia	Pugnano	0.626	453	11	208	60.8	18.4	0.81	1.33
Botro della Cava	Molina di Quosa	0.338	333	10	136	57.2	21.0	0.91	0.92
Rio dei Mulini	Molina di Quosa	2.376	512	11	279	58.6	11.4	3.10	3.55

Scolo di Rigoli	Rigoli	0.837	454	5	167	54.3	21.0	1.10	1.33
Rio della Cava	San Giuliano	0.727	351	20	164	51.0	14.3	1.18	1.37
Sugherone monte	Asciano	0.635	282	30	116	64.4	27.4	0.45	0.80
Sugherone valle	Asciano	0.134	191	19	49	53.7	5.2	0.30	0.56
Sugherone globale	Asciano	0.769	282	19	112	54.3	12.1	0.70	1.06
Monte Bianco	Asciano	0.227	267	5	91	52.0	3.0	0.50	0.63
Pianacce monte	Asciano	0.504	437	38	193	62.0	36.5	0.85	0.88
Pianacce valle	Asciano	0.054	162	18	33	42.4	6.7	0.30	0.33
Belucello monte	Asciano	0.113	289	28	114	59.0	31.1	0.31	0.67
Belucello valle	Asciano	0.151	157	6	26	29.3	4.6	0.51	0.75
Pancacci monte	Asciano	0.447	560	41	282	50.0	32.6	0.93	1.33
Pancacci medio	Asciano	0.056	190	10	52	37.5	8.1	0.37	0.77
Pancacci valle	Asciano	0.106	29	2	10	12.7	2.9	0.14	0.78
Ragnaia	Asciano	0.440	560	8	203	60.9	30.4	1.13	1.59
Zambra	Asciano	2.046	828	8	385	54.1	28.8	2.16	2.54
Affluente Zambra	Asciano	0.169	322	3	123	55.9	27.0	0.69	1.21
Sasso Grosso	Agnano	1.711	785	5	311	127.0	15.6	2.34	3.03
Fosso Barsanti	Agnano	1.276	740	15	314	75.5	18.2	1.67	2.34
Ferrovia 1	Gello	0.128	5	2	0.7	4.5	0.1	0.40	0.85
Ferrovia 2	Gello	0.048	5	2	0.9	9.0	0.1	0.40	0.52
Ferrovia 3	Gello	0.015	4	1	1.8	7.0	0.1	0.36	0.46
Ferrovia 4	Gello	0.015	4	1	1.8	7	0.1	0.30	0.30

STIMA DEL TEMPO DI CORRIVAZIONE

Una delle grandezze più importanti da individuare in idrologia per determinare l'idrogramma relativo alla sezione di chiusura di un bacino è rappresentata dal relativo Tempo di Corrivazione. Convenzionalmente il tempo di corrivazione valutato in un determinato punto di una rete di drenaggio è definito come il tempo che occorre alla generica goccia di pioggia caduta nel punto idraulicamente più lontano a raggiungere la sezione di chiusura del bacino in esame.

La stima di tale grandezza spesso può risultare poco agevole e l'impiego delle relative formule di calcolo può dare perciò luogo a valori non univoci che devono essere validati da dati sperimentali, là dove disponibili, o dalla sensibilità del progettista.

Data la difficoltà di tale valutazione, la soluzione più frequentemente adottata attribuisce al tempo di corrivazione la media dei valori calcolati mediante le formule note in letteratura di volta in volta ritenute valide per il bacino in esame.

Le formule impiegate nel presente studio sono:

1. La formula di Giandotti Aronica Paltrnieri valida per bacini di dimensioni minori a 10 kmq

$$T_c = \frac{\frac{1}{M \cdot d} \cdot \sqrt{A_b} + 1.5 \cdot L_b}{0.8 \cdot \sqrt{H_m}}$$

2. La formula di Viparelli che ipotizza una velocità media di deflusso pari a 1 m/s

$$T_c = \frac{L}{3.6}$$

3. La formula di Merlo Tournon tarata su bacini piemontesi di estensione molto piccola

$$T_c = 0.396 \cdot \frac{L}{\sqrt{i}} \cdot \left(\frac{A \cdot \sqrt{i}}{L^2 \cdot \sqrt{i_m}} \right)$$

4. La formula di Puglisi

$$Tc = 6 \cdot L^{(2/3)} \cdot (H_{max} - H_0)^{-(1/3)}$$

5. La formula SCS Chow, Maidment, Mays (dipendente dal valore del parametron CN, nel caso in analisi posto pari al CNIII determinate come illustrato più Avanti)

$$Tc = \frac{0.095 \cdot L_{max}^{0.8} \left(\frac{1000}{CN} - 9 \right)^{0.7}}{\sqrt{i_{v}}}$$

6. La formula di Pezzoli valida per bacini di modesta estensione e pianeggianti

$$T_c = 0.055 \cdot \frac{L}{i^{0.5}}$$

7. La formula di Pasini valida per bacini di modesta estensione e pianeggianti

$$T_c = \frac{24 \cdot 0.045 \cdot \sqrt[3]{A \cdot L}}{\sqrt{i \cdot 100}}$$

Nome del bacino	Giandotti-A-P	Viparelli	Merlo-Tournon	Puglisi	SCS	Pezzoli	Pasini	Tc [ore]
Civitonia	х	Х	Х		Х			0.38
Botro della Cava	х	Х	Х		Х			0.28

Rio dei Mulini	х	Х	Х		Х			0.77
Scolo di Rigoli	х	Х	х		Х			0.43
Rio della Cava	х	Х	х	Х	Х			0.52
Sugherone monte	х	Х	х	Х	Х			0.48
Sugherone valle	х	Х	х	Х	Х			0.32
Sugherone globale	х	Х	х	Х	Х			0.55
Monte Bianco	х	Х	х	Х	Х			0.35
Pianacce monte	х	Х	х	Х	Х			0.41
Pianacce valle	х	Х	х	Х	Х			0.25
Belucello monte	х	Х	х	Х	Х			0.28
Belucello valle	х	Х	х	Х	Х			0.45
Pancacci monte	х	Х	х	Х	Х			0.45
Pancacci medio	х	Х	х	Х	Х			0.32
Pancacci valle	х	Х	х	Х	Х			0.63
Ragnaia	х	Х	х	Х	Х			0.48
Zambra	х	Х	х	Х	Х			0.71
Affluente Zambra	х	Х	х	Х	Х			0.38
Sasso Grosso	х	Х	х		Х			0.57
Fosso Barsanti	х	Х	х		Х			0.52
Ferrovia 1	х					х	х	1.88
Ferrovia 2	х					х	Х	1.09
Ferrovia 3	х					х	х	0.74
Ferrovia 4	х					Х	Х	0.55

SCELTA DEL TEMPO DI RITORNO

In osservanza alle disposizioni contenute nel DPGR 53/R della Regione Toscana, le verifiche idrologiche e idrauliche sono svolte sia per eventi pluviometrici con tempo di ritorno trentennale "TR30", sia duecentennale "TR200".

DEFINIZIONE DEL REGIME PLUVIOMETRICO

Il regime pluviometrico della zona in esame è stato determinato con riferimento allo studio a carattere regionale "ANALISI DI FREQUENZA REGIONALE DELLE PRECIPITAZIONI ESTREME – LSPP – Aggiornamento al 2012" redatto grazie alla collaborazione tra Regione Toscana e Università di Firenze di cui alla DGRT 1133/2012, e disponibile sul sito del Settore Idrologico Regionale.

Il sistema ha provveduto alla definizione dei parametri a, n ed m descrittivi delle LSPP secondo una maglia regolare di lato 1km, e permette così di individuare i valori più appropriati dei tre parametri, semplicemente introducendone latitudine e longitudine.

Attraverso l'utilizzo del metodo statistico TCEV (Two Component Extreme Value) il citato studio definisce per il campo delle durate di pioggia minori e maggiori ad un'ora le curve di possibilità pluviometrica nella forma trinomia convenzionale

$$h = a \cdot t^n \cdot T_R^m$$

In questo caso sono presi in considerazione solo i parametri della curva di possibilità pluviometrica definiti per il campo delle durate di pioggia superiori ad un'ora. Il parametro m non è disponibile ma sono diversificati i valori a ed n per i diversi tempi di ritorno.

Per la presente analisi, in accordo con quanto riportato nel documento "Guida all'uso" allegato allo stesso studio "ANALISI DI FREQUENZA REGIONALE DELLE PRECIPITAZIONI ESTREME" già citato, si è provveduto mediante tecnologia GIS a caricare i files forniti dallo studio riportanti i parametri georeferenziati a ed n, ed a ritagliare tale dato secondo il perimetro del bacino considerato. Così facendo si sono determinati i valori medi delle celle della maglia ricadenti all'interno di ciascun perimetro. Più precisamente, per motivi di praticità e data la trascurabile variabilità del dato all'interno di piccoli intorni, si è scelto di raggruppare tra loro i bacini afferenti a ciascuna UTOE. In tal modo sono stati individuati i parametri medi ritenuti validi su tutti i bacini di interesse per ciascuna UTOE.

	TF	R30	TR200		
	"a"	"n"	"a"	"n"	
Pugnano	68.189	0.27964	94.894	0.30530	
Molina di Quosa	66.937	0.28671	92.359	0.31238	
Rigoli	66.369	0.28671	92.359	0.31238	
San Giuliano	66.080	0.28654	91.958	0.31221	
Asciano	66.138	0.29021	92.038	0.31589	
Agnano	64.717	0.29326	90.059	0.31894	
Piana Arno	65.037	0.29180	90.505	0.31747	
Gello	65.995	0.28858	91.838	0.31426	

Per il campo di durate di pioggia inferiori a mezzora, la curva di possibilità pluviometrica assume parametri "a" ed "n" differenti.

Il succitato studio "ANALISI DI FREQUENZA REGIONALE DELLE PRECIPITAZIONI ESTREME" e la relativa "Guida all'uso", però, non definiscono le curve nel campo di durate inferiori all'ora, né indicano una metodologia da seguire.

Tuttavia l'adozione del parametro n per il campo di durate inferiori ad un'ora pari a quello indicato dallo studio condurrebbe a consistenti sovrastime delle altezze di pioggia, come comunemente dimostrato in letteratura.

Lo stesso studio indica però la possibilità di estendere la curva sino alle durate di pioggia di 30 minuti senza incorrere in eccessivi errori, lasciando al professionista la scelta della curva per durate inferiori.

Nel presente studio si è scelto allora di adottare, per piogge di durata inferiore a 30 minuti, per il parametro "n" il valore di 0,48 in accordo con vari studi sperimentali (CSDU 1997¹). Il parametro "a" valido al di sotto dei 30 minuti è invece determinato per ciascun tempo di ritorno come:

$$a_{<30min} = a_{>30min} * 0.5^{n_{>30min}}/0.5^{0.48}$$

Il parametro a così determinato per la curva in corrispondenza di durate inferiori a 30 minuti è tale da far corrispondere l'altezza di pioggia di durata 30 minuti, sia essa determinata da destra (mediante cioè la curva valida per d>0.5h) o da sinistra (mediante cioè la curva valida per d<0.5h), assicurando la congruenza del dato e la continuità della curva, che diversamente fornirebbe paradossalmente altezze di pioggia per d<0.5h superiori a quelle determinate per alcune durate >0.5h.

In definitiva le curve di possibilità pluviometriche adottate sono le sequenti.

		TR	30	TR	200
		Parametro "a"	Parametro "n"	Parametro "a"	Parametro "n"
Duganana	Durate < 0.5 ore	78.348	0.48	107.110	0.48
Pugnano	Durate > 0.5 ore	68.189	0.27964	94.894	0.30530
Malina di Overs	Durate < 0.5 ore	75.884	0.48	103.738	0.48
Molina di Quosa	Durate > 0.5 ore	66.937	0.28671	92.359	0.31238
Disali	Durate < 0.5 ore	75.884	0.48	103.738	0.48
Rigoli	Durate > 0.5 ore	66.369	0.28671	92.359	0.31238
Can Civiliana	Durate < 0.5 ore	75.563	0.48	103.300	0.48
San Giuliano	Durate > 0.5 ore	66.080	0.28654	91.958	0.31221
Assisses	Durate < 0.5 ore	75.437	0.48	103.126	0.48
Asciano	Durate > 0.5 ore	66.138	0.29021	92.038	0.31589
Agnano	Durate < 0.5 ore	73.660	0.48	100.696	0.48

¹ Centro Studi Deflussi Urbani, Milano.

	Durate > 0.5 ore	64.717	0.29326	90.059	0.31894
Diana Arno	Durate < 0.5 ore	74.099	0.48	101.298	0.48
Piana Arno	Durate > 0.5 ore	65.037	0.29180	90.505	0.31747
Calla	Durate < 0.5 ore	75.359	0.48	103.018	0.48
Gello	Durate > 0.5 ore	65.995	0.28858	91.838	0.31426

IETOGRAMMA DI PROGETTO

Le curve di possibilità pluviometrica forniscono i volumi integrali di pioggia attesi in funzione della durata e per un prefissato periodo di ritorno, mentre non forniscono alcuna indicazione sulla distribuzione temporale della pioggia, che rappresenta un elemento fondamentale nel processo di trasformazione afflussi-deflussi.

D'altronde la modalità con cui l'intensità di pioggia varia durante un dato evento pluviometrico è da ritenersi del tutto casuale e quindi il suo studio dovrebbe essere caratterizzato da opportune indagini statistiche atte ad individuare la forma dello ietogramma.

Nella pratica progettuale si ovvia alla mancanza di dati statistici che permettano la ricostruzione dello ietogramma, mediante l'adozione di ietogrammi detti sintetici, tali cioè da non rappresentare il reale andamento dell'evento pluviometrico, ma in grado di introdurre nelle procedure di trasformazione afflussi-deflussi una variabilità temporale della pioggia che dia luogo a risultati che si possano ritenere cautelativi. La legge di distribuzione che si introduce rappresenta, in tal modo, quello che viene definito lo ietogramma di progetto.

Tra le varie procedure note in letteratura, si è scelto di impiegare lo ietogramma di tipo rettangolare, tale cioè da simulare un evento pluviometrico di intensità costante nel tempo. Per le finalità dello studio in esame, infatti, avendo determinato gli idrogrammi di piena per molte durate di pioggia e visti i modelli di trasformazione afflussi-deflussi adottati, non risulta opportuno impiegare ietogrammi sintetici che rappresentino la variabilità temporale dell'evento pluviometrico. Diversamente l'effetto di picco introdotto contemporaneamente dallo ietogramma e dal modello di trasformazione A-D, condurrebbe a risultati eccessivamente cautelativi nei confronti dei valori di picco delle portate, e inciderebbe negativamente sulla determinazione delle esondazioni concentrandone la durata temporale.

QUANTIFICAZIONE DELLA PIOGGIA NETTA

Per quantificare la pioggia netta, ovvero la quota parte del volume di pioggia che va a produrre deflusso superficiale, si stimano le perdite idrologiche che avvengono per intercettazione della vegetazione, detenzione superficiale, immagazzinamento nelle depressioni superficiali, evapotraspirazione e infiltrazione.

Il metodo applicato è quello Curve Number (CN), che valuta istante per istante il quantitativo di pioggia che va a produrre deflusso superficiale in funzione della litologia del suolo, del suo uso e del grado di imbibizione iniziale (AMC). Sotto l'aspetto litologico i suoli sono distinti in 4 gruppi, indicati in Tabella 1, a cui sono legati, in funzione dell'utilizzazione, i parametri CN riportati in Tabella 2. La Tabella 2 riporta i valori di CN per la classe di imbibizione iniziale II, per passare alle altre classi si utilizzano i valori riportati nella Tabella 3.

Tabella 1 - Classificazione litologica dei suoli secondo il Soil Conservation Service (SCS)

GRUPPO	DESCRIZIONE
А	Scarsa potenzialità di deflusso. Comprende sabbie profonde con scarsissimo limo e argilla, ghiaie profonde molto permeabili.
В	Potenzialità di deflusso moderatamente bassa. Comprende la maggior parte dei suoli sabbiosi, meno profondi rispetto al gruppo A, ma il gruppo nel suo insieme mantiene alte capacità di infiltrazione anche a saturazione
С	Potenzialità di deflusso moderatamente alte. Comprende suoli sottili e suoli contenenti considerevoli quantità di argilla e colloidi, anche se in quantità minore del gruppo D. Il gruppo ha scarsa capacità di infiltrazione a saturazione.
D	Potenzialità di deflusso molto alta. Comprende la maggior parte delle argille con alta capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressoché impermeabili in vicinanza della superficie.

Tabella 2 - Parametri CN relativi alla classe AMC II di umidità iniziale, per le quattro classi litologiche e per i vari tipi di uso del suolo

Tipo di copertura (uso del suolo)	А	В	С	D
TERRENO COLTIVATO				
Senza trattamenti di conservazione	72	81	88	91
Con interventi di conservazione	62	71	78	81
TERRENO DA PASCOLO				
Cattive condizioni	68	79	86	89
Buone condizioni	39	61	74	80
PRATERIE				
Buone condizioni	30	58	71	78
TERRENI BOSCOSI o FORESTATI				
Terreno sottile sottobosco povero di foglie	45	66	77	83
Sottobosco e copertura buoni	25	55	70	77
SPAZI APERTI, PRATI RASATI, PARCHI				
Buone condizioni con almeno il 75% dell'area con	39	61	74	80
copertura erbosa				
Condizioni normali con copertura erbosa intorno al	49	69	79	84
50%				
AREE COMMERCIALI				
(impermeabilità 85%)	89	92	94	95
DISTRETTI INDUSTRIALI				

(impermeabilità 72%)	81	88	91	93
AREE RESIDENZIALI				
Impermeabilità media (%)				
65%	77	85	90	92
38%	61	75	83	87
30%	57	72	81	86
25%	54	70	80	85
20%	51	68	79	84
PARCHEGGI IMPERMEABILIZZATI, TETTI	98	98	98	98
STRADE				
Pavimentate, con cordoli e fognature	98	98	98	98
Inghiaiate o selciate con buche	76	85	89	91
In terra battuta (non asfaltate)	72	82	87	89

Tabella 3 - Conversione dei valori del CN a seconda delle condizioni AMC di umidità iniziali.

CLASSE AMC			CL	ASSE A	MC
I	II	III	I	II	III
100	100	100	40	60	78
87	95	98	35	55	74
78	90	96	31	50	70
70	85	94	22	40	60
63	80	91	15	30	50
57	75	88	9	20	37
51	70	85	4	10	22
45	65	82	0	0	0

Per la stima del parametro CN abbiamo scelto di avvalersi dello Studio "ATTIVITA' DI RICERCA PER LA MITIGAZIONE DEL RISCHIO IDRAULICO NELLA REGIONE TOSCANA" frutto dell'ACCORDO DI COLLABORAZIONE SCIENTIFICA TRA REGIONE TOSCANA E DIPARTIMENTO DI INGEGNERIA CIVILE E AMBIENTALE DELL'UNIVERSITA' DEGLI STUDI DI FIRENZE, i cui risultati sono pubblicati sul sito della Regione Toscana.

Lo Studio suddetto ha prodotto una cartografia in formato shapefile rappresentante la zonizzazione del territorio toscano, e per ogni area omogenea fornisce i dati di uso del suolo e tipo di terreno, nonché la lettera raffigurante il tipo di suolo ed il valore CN II associato.

Secondo le indicazioni suggerite dagli Uffici del Genio Civile Valdarno Inferiore e Costa, si è proceduto a correggere i valori di CN II ottenuti per le aree boscate relative ai codici Corine Land Cover 311, 312 e 313 assegnando i seguenti valori:

- Per Tipo di Suolo "A" si assume CN II pari a 36
- Per Tipo di Suolo "B" si assume CN II pari a 48
- Per Tipo di Suolo "C" si assume CN II pari a 57
- Per Tipo di Suolo "D" si assume CN II pari a 63

Si riportano allora i valori ottenuti per ciascuna area omogenea interna ai bacini.

В	Bacino	Uso del suolo	Terreno	Tipo suolo	CN II	Area KMq
	В	Boschi di latifoglie	LOAM	В	60	0.0182
onia	Boschi misti	LOAM	В	60	0.4024	
	ivito	Boschi misti	SILT LOAM	В	60	0.0249
	O	Sistemi colturali e particellari permanenti	LOAM	В	73	0.0239

Ulivet Ulivet Bosch Bosch Bosch Bosch Bosch		LOAM SILT LOAM	B B	73 65	0.0022 0.1274
Ulivet Bosch Bosch Bosch	ti				
Bosch Bosch Bosch				65	0.0274
Bosch		LOAM	В	60	0.1339
Bosch Bosch Sister	chi di latifoglie	SANDY LOAM	A	36	0.0398
Bosch Sister	chi di latifoglie	SILT LOAM	В	60	0.0747
Sister	chi di latifoglie	SILT	В	60	0.0106
	emi colturali e particellari permanenti	LOAM	В	73	0.0354
Sister	emi colturali e particellari permanenti	SANDY LOAM	Α	61	0.0329
o Sister	emi colturali e particellari permanenti	SILT LOAM	В	73	0.0063
Sister	emi colturali e particellari permanenti	SILT	В	73	0.0234
Ulivet	rti	LOAM	В	65	0.0001
Ulivet	ti	SANDY LOAM	Α	43	0.0035
Ulivet	ti	SILT LOAM	В	65	0.0003
Bosch	chi di latifoglie	LOAM	В	60	0.7611
Bosch	chi di latifoglie	SANDY LOAM	Α	36	0.0030
	chi di latifoglie	SILT	В	60	0.0007
Bosch	chi misti	LOAM	В	60	1.3973
Sister	emi colturali e particellari permanenti	LOAM	В	73	0.0201
Bosch W Sister Sister Sister	emi colturali e particellari permanenti	SILT LOAM	В	73	0.0027
. <u>Q</u> Sister	emi colturali e particellari permanenti	SILT	В	73	0.0314
Ulivet	ti	LOAM	В	65	0.2840
Ulivet	rti	SILT LOAM	В	65	0.0069
Ulivet	rti	SILT	В	65	0.0028
Bosch	chi di latifoglie	LOAM	В	60	0.5602
Bosch	chi di latifoglie	SANDY LOAM	Α	36	0.0039
Bosch	chi di latifoglie	SILT LOAM	В	60	0.0057
Bosch	chi di latifoglie	SILT	В	60	0.0002
Bosch W Sister Sister Sister	chi misti	LOAM	В	60	0.0014
Sister	emi colturali e particellari permanenti	LOAM	В	73	0.0003
Sister	emi colturali e particellari permanenti	SILT LOAM	В	73	0.0137
Sister	emi colturali e particellari permanenti	SILT	В	73	0.0583
Ulivet	ti	LOAM	В	65	0.1217
Ulivet	rti	SANDY LOAM	Α	43	0.0242
Ulivet	rti	SILT LOAM	В	65	0.0320
Ulivet	rti	SILT	В	65	0.0288
in evo	a vegetazione boschiva e arbustiva oluzione	LOAM	В	56	0.0029
Bosch Prati :	chi misti	LOAM	В	60	0.0444
Prati s	stabili	LOAM	В	69	0.4999
∵ Tessu	uto urbano discontinuo	LOAM	В	85	0.0079
Ulivet		LOAM	В	65	0.1569
	a vegetazione boschiva e arbustiva oluzione	CLAY LOAM	D	77	0.0017
e in evo	a vegetazione boschiva e arbustiva oluzione	LOAM	В	56	0.1167
e Bosch	chi di conifere	LOAM	В	60	0.1152
D Bosch	chi misti	LOAM	В	60	0.0514
Prati s	stabili	CLAY LOAM	D	84	0.0018
	stabili	LOAM	В	69	0.2010
Prati s					

	Uliveti	CLAY LOAM	D	82	0.0472
	Uliveti	LOAM	В	65	0.0951
	Nd	SILT	В	85	0.0057
alle	Aree a vegetazione boschiva e arbustiva in evoluzione	LOAM	В	56	0.0095
Sugherone valle	Boschi di conifere	LOAM	В	60	0.0005
one	Boschi misti	LOAM	В	60	0.0000
Jerc	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0228
ugh	Tessuto urbano discontinuo	LOAM	В	85	0.0025
S	Uliveti	CLAY LOAM	D	82	0.0252
	Uliveti	LOAM	В	65	0.0679
	Aree a vegetazione boschiva e arbustiva in evoluzione	CLAY LOAM	D	77	0.0017
	Aree a vegetazione boschiva e arbustiva in evoluzione	LOAM	В	56	0.1263
<u>e</u>	Boschi di conifere	LOAM	В	60	0.1188
ops	Boschi misti	LOAM	В	60	0.0528
g	Prati stabili	CLAY LOAM	D	84	0.0018
one	Prati stabili	LOAM	В	69	0.2011
Sugherone globale	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0233
ugł	Tessuto urbano discontinuo	LOAM	В	85	0.0025
Ŋ	Tessuto urbano discontinuo	SILT	В	85	0.0057
	Uliveti	CLAY LOAM	D	82	0.0724
	Uliveti	LOAM	В	65	0.1630
	Aree a vegetazione boschiva e arbustiva in evoluzione	LOAM	В	56	0.0637
0	Sistemi colturali e particellari permanenti	CLAY LOAM	D	84	0.0012
lu C	Sistemi colturali e particellari permanenti	SILT	В	73	0.0011
Monte Bianco	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0012
nte	Tessuto urbano discontinuo	SILT	В	85	0.0004
Μο	Uliveti	CLAY LOAM	D	82	0.0146
_	Uliveti	LOAM	В	65	0.1383
	Uliveti	SILT	В	65	0.0061
	Boschi di conifere	LOAM	В	60	0.0059
e g	Boschi misti	LOAM	В	60	0.4458
Pianacce monte	Boschi misti	SILT LOAM	В	60	0.0014
Pia	Uliveti	LOAM	В	65	0.0378
	Uliveti	SILT LOAM	В	65	0.0131
	Boschi misti	LOAM	В	60	0.0084
	Boschi misti	SILT LOAM	В	60	0.0005
<u>e</u>	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0010
Pianacce valle	Tessuto urbano discontinuo	LOAM	В	85	0.0034
CCe	Tessuto urbano discontinuo	SILT	В	85	0.0074
ına	Uliveti	CLAY LOAM	D	82	0.0050
Piè	Uliveti	LOAM	В	65	0.0232
	Uliveti	SILT LOAM	В	65	0.0050
	Uliveti	SILT	В	65	0.0002
Belucello	Boschi misti	LOAM	В	60	0.0523
monte	Uliveti	LOAM	В	65	0.0610
Dalina II	Nd	SILT	В	65	0.0003
Belucello	Nd	SILT	В	73	0.0040
valle	Nd	SILT	В	85	0.0265
	•	•	•	•	•

	Boschi misti	LOAM	В	60	0.0161
	Sistemi colturali e particellari permanenti	CLAY LOAM	D	84	0.0407
	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0261
	Tessuto urbano discontinuo	LOAM	В	85	0.0056
	Uliveti	CLAY LOAM	D	82	0.0092
	Uliveti	LOAM	В	65	0.0222
Pancacci	Boschi misti	LOAM	В	60	0.3340
monte	Uliveti	LOAM	В	65	0.1102
	Boschi misti	LOAM	В	60	0.0084
	Boschi misti	SILT LOAM	В	60	0.0005
<u>5</u>	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0010
Pancacci medio	Tessuto urbano discontinuo	LOAM	В	85	0.0034
<u> </u>	Tessuto urbano discontinuo	SILT	В	85	0.0074
cac	Uliveti	CLAY LOAM	D	82	0.0050
² an	Uliveti	LOAM	В	65	0.0232
	Uliveti	SILT LOAM	В	65	0.0050
	Uliveti	SILT	В	65	0.0002
	Nd	SILT	В	65	0.0002
<u>o</u>	Nd	SILT	В	73	0.0085
Pancacci valle	Nd	SILT	В	85	0.0229
Ċ	Seminitavi in aree non irrigue	CLAY LOAM	D	84	0.0007
Ca	Sistemi colturali e particellari permanenti	CLAY LOAM	D	84	0.0722
Par	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0013
	Uliveti	CLAY LOAM	D	82	0.0005
	Boschi misti	LOAM	В	60	0.2596
_	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0010
laia	Tessuto urbano discontinuo	SILT	В	85	0.0050
Ragnaia	Uliveti	CLAY LOAM	D	82	0.0323
α.	Uliveti	LOAM	В	65	0.1353
	Uliveti	SILT	В	65	0.0065
	Aree a vegetazione sclerofilia	LOAM	В	56	0.0749
	Boschi di latifoglie	LOAM	В	60	0.0095
	Boschi misti	CLAY LOAM	D	79	0.0043
	Boschi misti	LOAM	В	60	1.6994
<u> </u>	Boschi misti	SILT LOAM	В	60	0.0677
Zambra	Tessuto urbano discontinuo	CLAY LOAM	D	92	0.0030
Zaı	Tessuto urbano discontinuo	SILT	В	85	0.0124
	Uliveti	CLAY LOAM	D	82	0.0723
	Uliveti	LOAM	В	65	0.0762
	Uliveti	SILT LOAM	В	65	0.0060
	Uliveti	SILT	В	65	0.0203
E	Nd	SILT	В	65	0.0068
Affluente Zambra	Aree a vegetazione sclerofilia	LOAM	В	56	0.0008
Zam	Boschi misti	CLAY LOAM	D	79	0.0019
Ęe Zi	Boschi misti	LOAM	В	60	0.1257
ent	Uliveti	CLAY LOAM	D	82	0.0213
l⊞.	Uliveti	LOAM	В	65	0.0089
<	Uliveti	SILTY CLAY	D	82	0.0036
	Aree a vegetazione sclerofilia	CLAY LOAM	D	77	0.0011

	Aree a vegetazione sclerofilia	LOAM	В	56	1.1453
Sasso Grosso	Boschi misti	LOAM	В	60	0.2765
	Uliveti	CLAY LOAM	D	82	0.1091
	Uliveti	LOAM	В	65	0.1785
	Uliveti	SILTY CLAY	D	82	0.0007
	Aree a vegetazione boschiva e arbustiva in evoluzione	LOAM	В	56	0.0103
	Aree a vegetazione sclerofilia	CLAY LOAM	D	77	0.0225
anti	Aree a vegetazione sclerofilia	LOAM	В	56	0.3923
arsa	Boschi di conifere	LOAM	В	60	0.2230
Fosso Barsanti	Boschi di latifoglie	CLAY LOAM	D	79	0.0098
SSC	Boschi di latifoglie	LOAM	В	60	0.4242
ß.	Boschi misti	LOAM	В	60	0.1369
	Uliveti	CLAY LOAM	D	82	0.0287
	Uliveti	LOAM	В	65	0.0280
	Aree estrattive	SILT	В	85	0.3070
	Aree estrattive	SILTY CLAY	D	91	0.1525
	Aree industriali o commerciali	SILT LOAM	В	88	0.0271
	Aree industriali o commerciali	SILT	В	88	0.1032
	Aree industriali o commerciali	SILTY CLAY	D	93	0.0002
	Corsi d'acqua, canali e idrovie	SILT LOAM	В	98	0.0832
	Corsi d'acqua, canali e idrovie	SILT	В	98	0.8604
2	Seminitavi in aree non irrigue	SILT LOAM	В	73	5.1623
Arı	Seminitavi in aree non irrigue	SILT	В	73	0.9440
Piana Arno	Seminitavi in aree non irrigue	SILTY CLAY	D	84	4.3686
Pia	Sistemi colturali e particellari permanenti	SILT LOAM	В	73	0.6388
	Sistemi colturali e particellari permanenti	SILT	В	73	0.0455
	Sistemi colturali e particellari permanenti	SILTY CLAY	D	84	0.2269
	Tessuto urbano continuo	SILT LOAM	В	92	0.0001
	Tessuto urbano continuo	SILT	В	92	0.2654
	Tessuto urbano discontinuo	SILT LOAM	В	85	0.7397
	Tessuto urbano discontinuo	SILT	В	85	4.9932
	Tessuto urbano discontinuo	SILTY CLAY	D	92	0.1274
	Nd	SILT	В	73	0.0067
Ferrovia	Nd	SILT	В	85	0.0477
1	Seminitavi in aree non irrigue	SILT LOAM	В	73	0.0580
	Tessuto urbano discontinuo	SILT LOAM	В	85	0.0161
Ferrovia	Seminitavi in aree non irrigue	SILT	В	73	0.0228
2	Tessuto urbano discontinuo	SILT	В	85	0.0250
	Seminitavi in aree non irrigue	SILT	В	73	0.0000
Ferrovia	Seminitavi in aree non irrigue	SILT	В	73	0.0000
3	Tessuto urbano discontinuo	SILT	В	85	0.0177
Ferrovia	Nd	SILT	В	85	0.0136
4	Tessuto urbano discontinuo	SILTY CLAY	D	92	0.0018

È allora necessario valutare il parametro CN II di ciascun bacino come media pesata sull'area dei vari CN II di ciascuna aera omogenea.

Media Ponderata =
$$\frac{\sum_{i=i}^{n} [x_i \cdot p_i]}{\sum_{i=1}^{n} p_i}$$

Così facendo si ottiene i seguenti valori medi pesati di CNII

Come di pratica comune, per tenere conto della situazione più cautelativa in cui l'evento critico possa presentarsi in corrispondenza di una condizione satura del suolo, si è scelto di adottare per l'esame in oggetto il valore relativo alla classe AMC III, ottenendo il parametro di progetto **CN III** già incontrato per la formula di calcolo SCS del tempo di corrivazione.

Si sono calcolati dunque gli altri due parametri del metodo: S è la capacità di ritenzione superficiale e Ia² il valore limite di pioggia che il terreno può trattenere nella fase iniziale.

Nome del bacino	CN	CN III	S	ia
Civitonia	61.8	79.4	65.81	13.16
Botro della Cava	59.6	77.7	72.87	14.57
Rio dei Mulini	60.8	78.7	68.87	13.77
Scolo di Rigoli	61.6	79.3	66.44	13.29
Rio della Cava	67.7	83.6	49.79	9.96
Sugherone monte	64.7	81.7	56.45	11.35
Sugherone valle	73.3	87.0	37.95	7.59
Sugherone globale	66.2	82.7	53.16	10.63
Monte Bianco	63.9	81.1	59.17	11.83
Pianacce monte	60.5	78.4	69.96	13.99
Pianacce valle	70.2	85.1	44.33	8.87
Belucello monte	62.7	80.2	62.90	12.58
Belucello valle	79.8	90.9	25.52	5.10
Pancacci monte	61.2	79.0	67.55	13.51
Pancacci medio	70.2	85.1	44.33	8.87
Pancacci valle	83.4	93.0	19.01	3.80
Ragnaia	63.6	80.87	60.08	12.02
Zambra	61.1	78.9	67.94	13.59
Affluente Zambra	63.9	81.1	59.12	11.82
Sasso Grosso	59.3	77.4	74.11	14.82
Fosso Barsanti	59.8	77.8	72.35	7.23
Piana Arno	81.3	91.8	22.68	4.54
Ferrovia 1	79.0	90.4	27.06	5.41
Ferrovia 2	79.3	90.6	26.46	5.29
Ferrovia 3	77.0	89.2	30.75	6.15
Ferrovia 4	85.8	94.3	15.30	3.06

Infine si è valutata la pioggia netta mediante la seguente espressione:

$$h_n = \frac{(h - Ia)^2}{h - Ia + S}$$

 $[\]frac{1}{2} S = 25.4 \left[\left(\frac{100}{CN} \right) - 10 \right] Ia = 0.2 \cdot S$

Si cono così ottenuti gli ietogrammi di pioggia netta per ciascun bacino analizzato, ciascun tempo di ritorno considerato e ciascuna durata di pioggia indagata.

TRASFORMAZIONE AFFLUSSI-DEFLUSSI

Al fine di stimare le portate che defluiscono all'interno del nuovo corso d'acqua, la trasformazione afflussi-deflussi è stata svolta, per ciascun tempo di ritorno, adottando il modello *dell'Idrogramma Unitario SCS* (*Soil Conservation Service*) o *l'Idrogramma Unitoario di Clark* scegliendo di volta in volta per ogni bacino tra l'uno o l'altro metodo, in funzione delle diverse caratteristiche, particolarmente nei riguardi della pendenza media del versante.

Idrogramma Unitario SCS

L'idrogramma SCS è un idrogramma adimensionale definito dal Soil Conservation Service in base all'analisi di idrogrammi di piena in uscita dalla sezione di chiusura di numerosi bacini idrografici strumentati, di varia misura. Vista la sua semplicità e la sua generalità, rappresenta il metodo maggiormente impiegato nelle analisi di trasformazione afflussi-deflussi.

Questo metodo si basa sulla stima del "lag time" che rappresenta lo sfasamento temporale tra il picco dell'idrogramma ed il baricentro dello ietogramma che lo ha prodotto. Il valore del "lag time" è definito dalla seguente espressione empirica:

$$T_L = \frac{3}{5} \cdot T_C$$

dove:

T_C è il tempo di corrivazione precedentemente determinato

<u>Idrogramma Unitario di Clark</u>

L'idrogramma SCS sopra descritto rappresenta il metodo di analisi delle trasformazioni afflussideflussi generalmente valido. Tuttavia riteniamo che esso mal rappresenti le reali caratteristiche di deflusso riscontrabili nei bacini di pianura caratterizzati da pendenze decisamente contenute come quelli individuati all'interno dell'UTOE Gello. In tal caso, perciò, si è preferito ricorrere alla schematizzazione secondo l'idrogramma unitario di Clark.

L'idrogramma unitario di Clark simula il comportamento del bacino attraverso i due seguenti fenomeni fisici:

- il trasferimento della pioggia netta dal punto generico del bacino idrografico sino alla sezione di chiusura;
- la laminazione della massa liquida dovuta al temporaneo invaso delle precipitazioni sulla superficie del bacino idrografico.

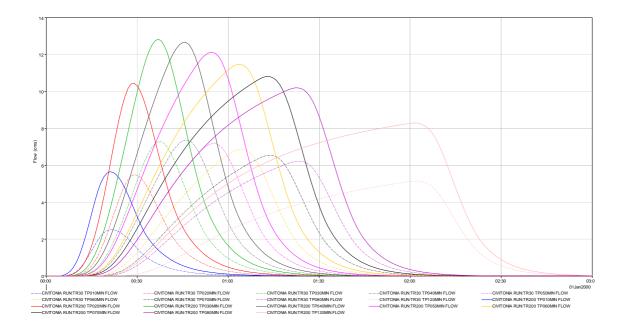
Per la sua definizione si richiede la stima del tempo di corrivazione e della costante di invaso. La costante di invaso R può essere determinata assumendo per il rapporto

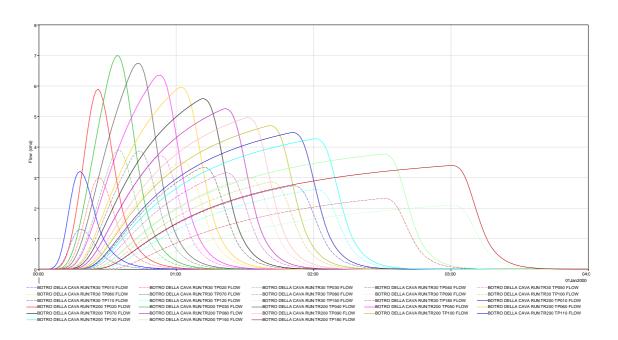
$$\frac{R}{T_C + R}$$

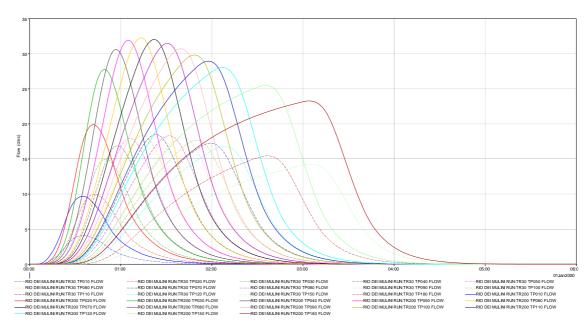
un valore costante all'interno di regioni idrologiche omogenee variando generalmente da valori prossimi a 0.1, tipici solitamente di idrogrammi caratterizzati da un ramo ascendente ripido, (ad esempio idrogrammi generati da bacini urbani o da bacini ad elevata pendenza media) fino a valori prossimi a 0.7, per idrogrammi relativi a bacini agricoli pianeggianti o coperti da boschi con bassa pendenza media.

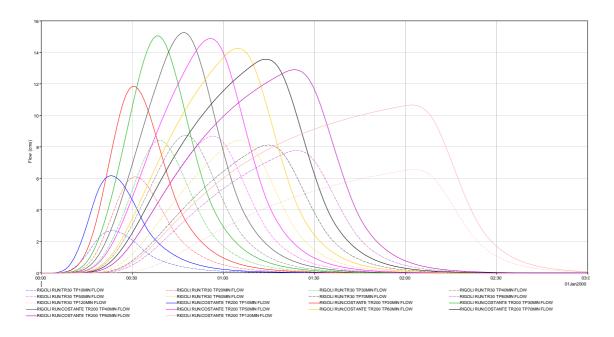
Nel caso particolare dei bacini afferenti all'UTOE di Gello, denominati Ferrovia 1, 2, 3 e 4 si è perciò adottato per il suddetto rapporto il valore di 0,7 da cui si ricava

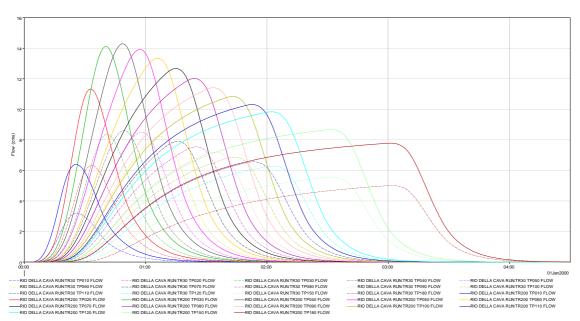
$$R \cong 2 \cdot T_C$$

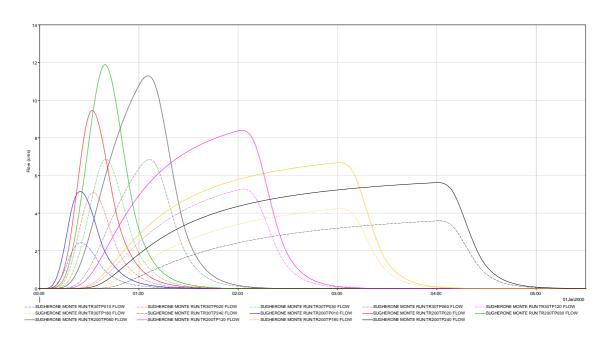

IDROGRAMMI DI PIENA INDAGATI

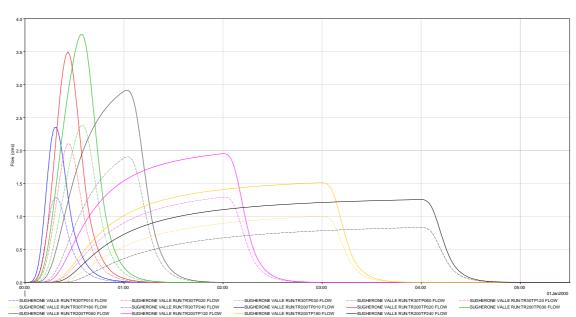

Per ciascuna UTOE indagata, perciò, è stata realizzata una modellazione con il software HEC-HMS, discretizzando ogni sottobacino di interesse per i corsi d'acqua indagati.

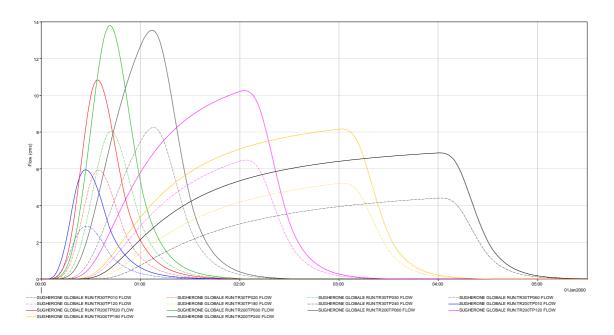

Sintetizzando, perciò, per la schematizzazione dei bacini in esame si sono utilizzati distinti elementi subbasin, a cui sono stati forniti in ingresso ietogrammi di pioggia ad intensità costante di diversa durata. La pioggia efficace è stata calcolata considerando le perdite per infiltrazione e per detenzione adottando il metodo SCS Curve Number. Gli ietogrammi di pioggia netti così ottenuti sono stati applicati all'idrogramma unitario di Clark o all'idrogramma SCS ottenendo così il deflusso di piena in uscita dalla sezione di chiusura dei singoli sottobacini.

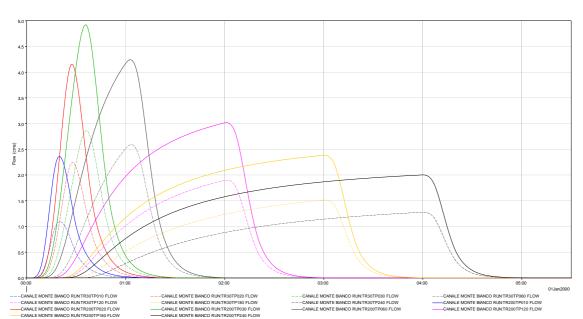

Si riportano di seguito gli idrogrammi di piena calcolati per i singoli bacini analizzati, che costituiranno dato di input per l'analisi idraulica. Come precedentemente esposto, per il caso particolare del bacino denominato Piana dell'Arno, data la schematizzazione che si è scelto di adottare, non è stato individuato l'idrogramma di piena ad una sezione di chiusura, ma ci siamo limitati ad individuare lo ietogramma di pioggia netta, per TR200 e TR30, corrispondente ad una pioggia di durata 60 minuti.

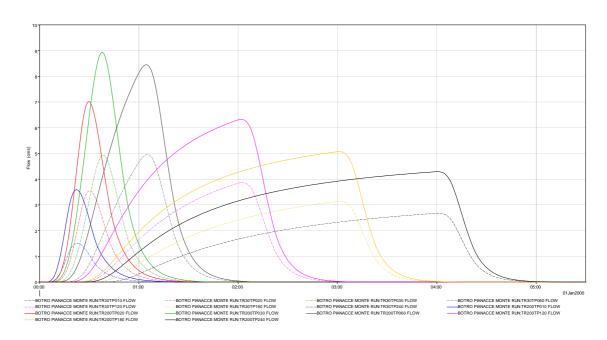

Per quanto riguarda invece gli idrogrammi dei bacini afferenti al Canale Demaniale si rimanda allo studio redatto dalla società H.S. Ingegneria S.r.l. con sede in Via Bonistalli 12, 50053 Empoli (FI), per conto del CONSORZIO DI BONIFICA 4 BASSO VALDARNO. Si riportano comunque a seguire i relativi idrogrammi.

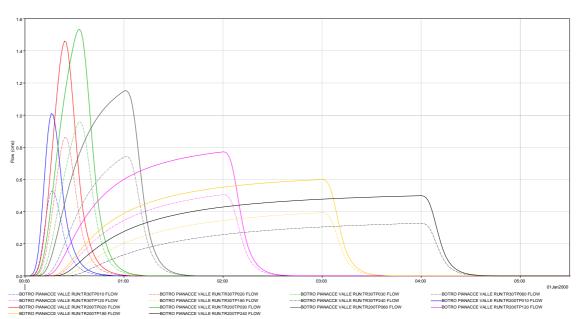


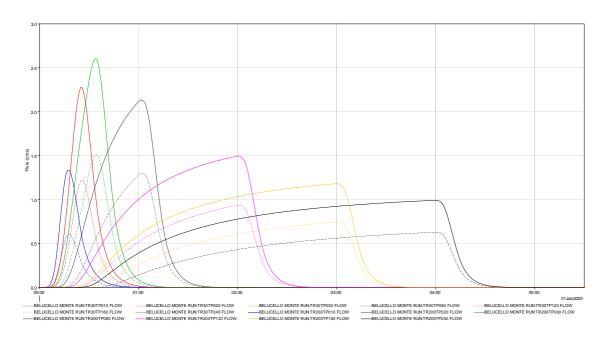


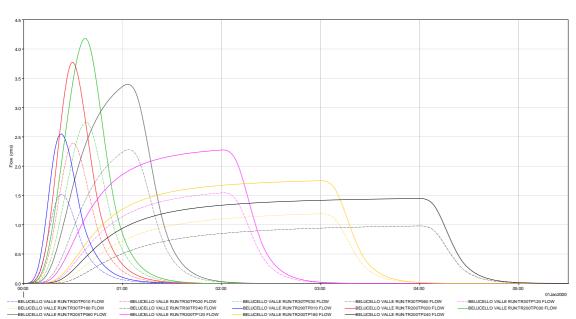


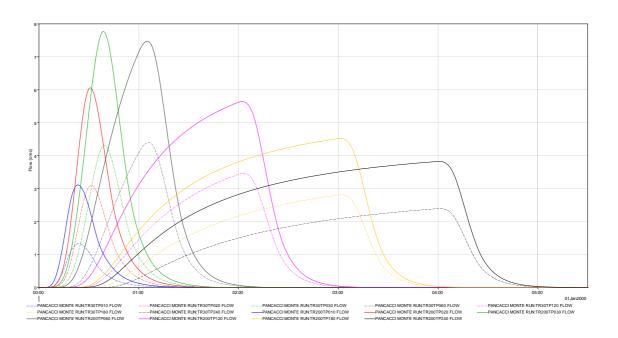


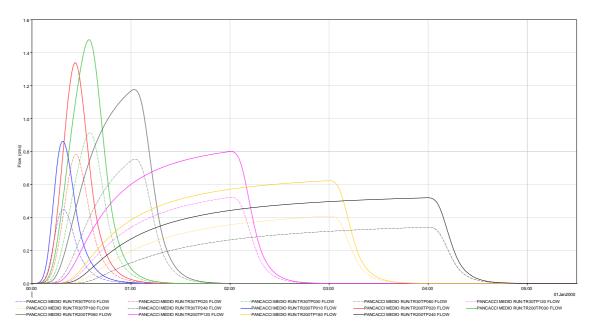


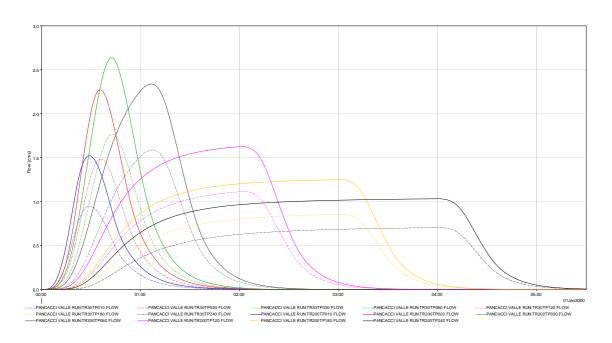


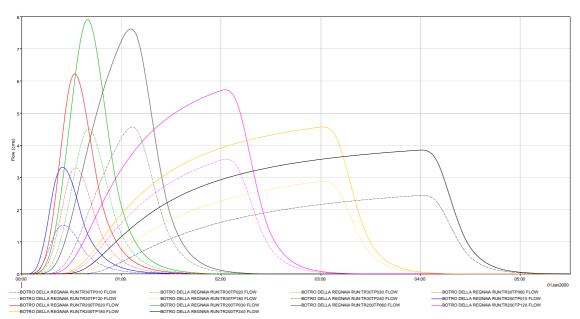


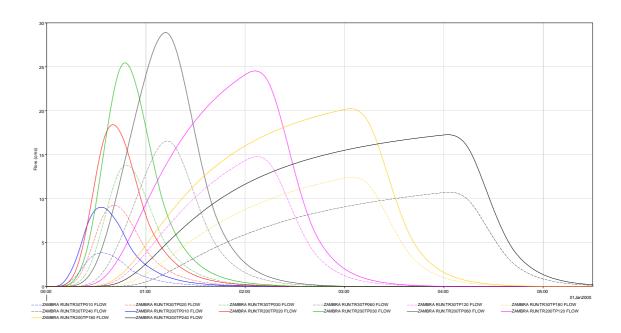


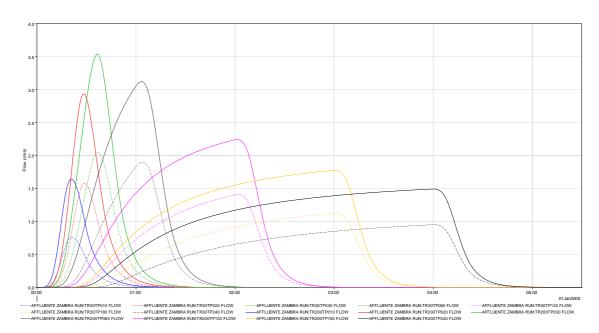


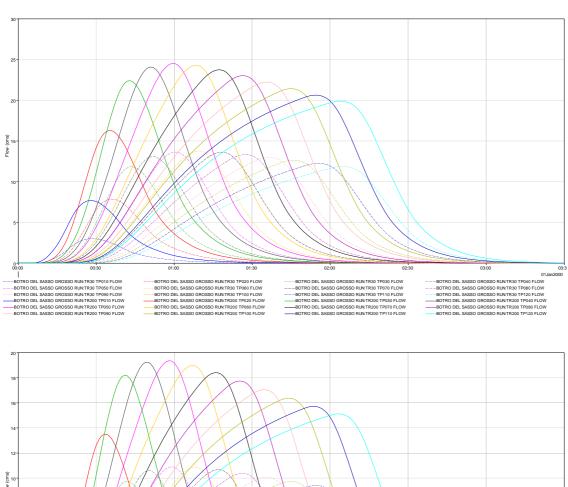


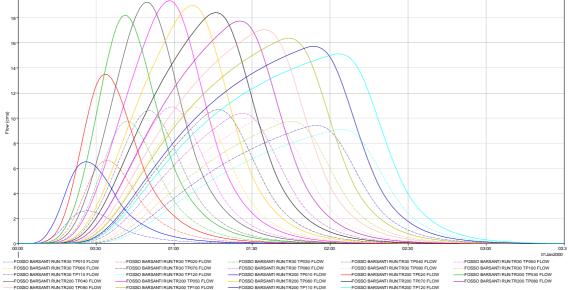


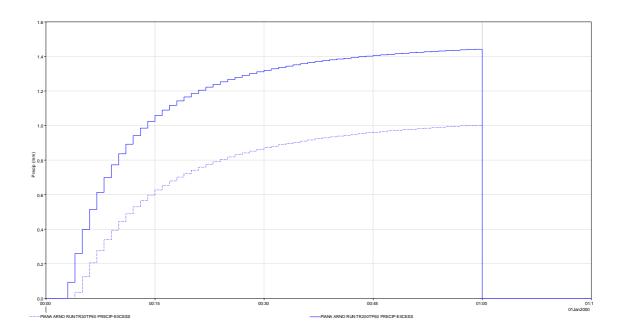


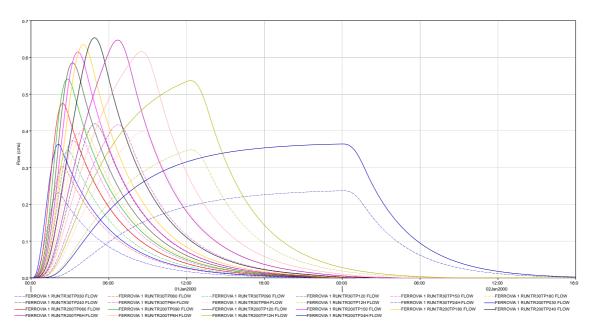


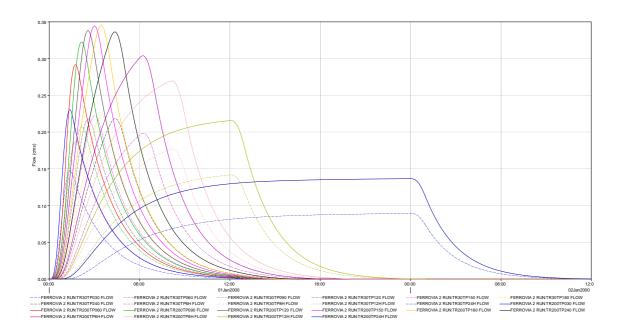


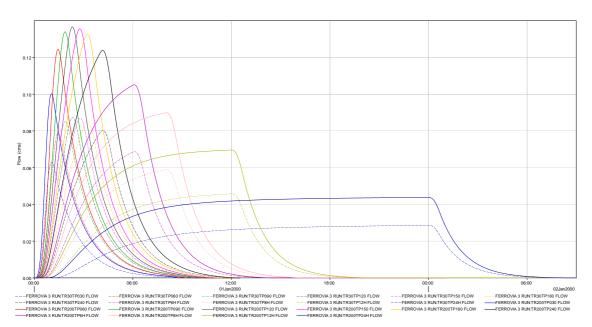


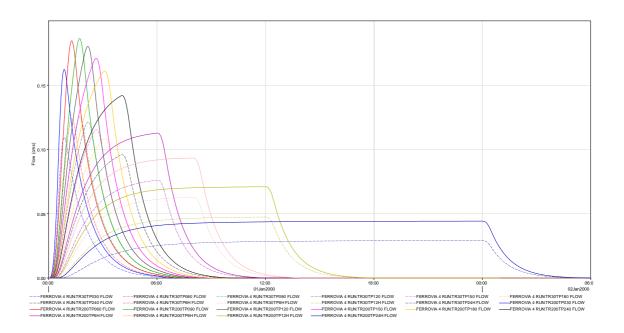


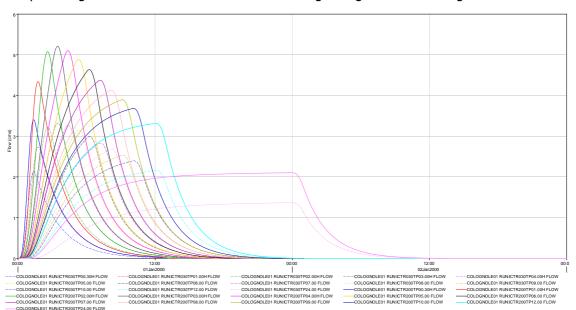


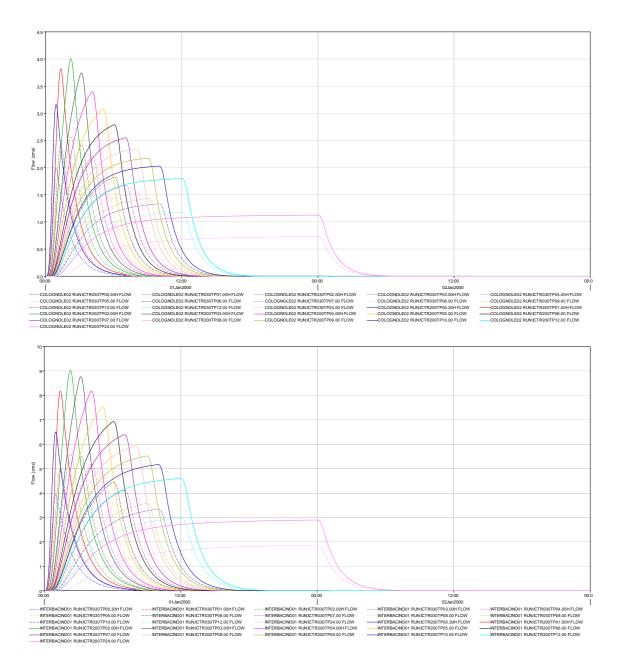


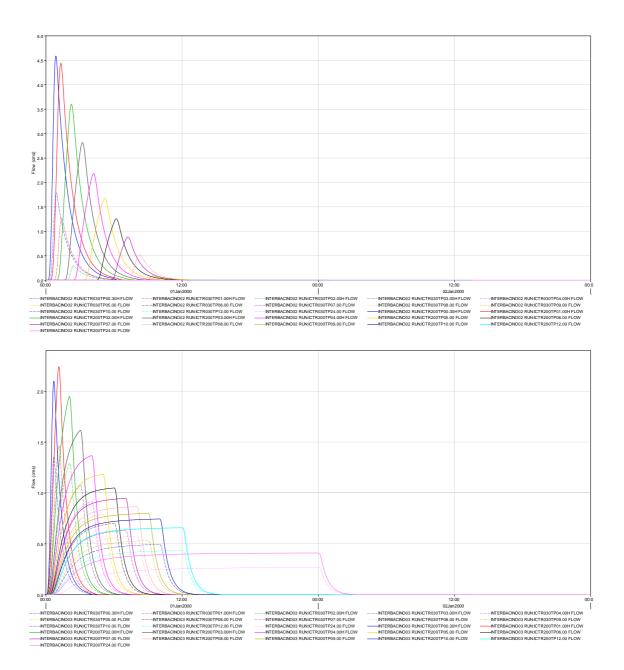


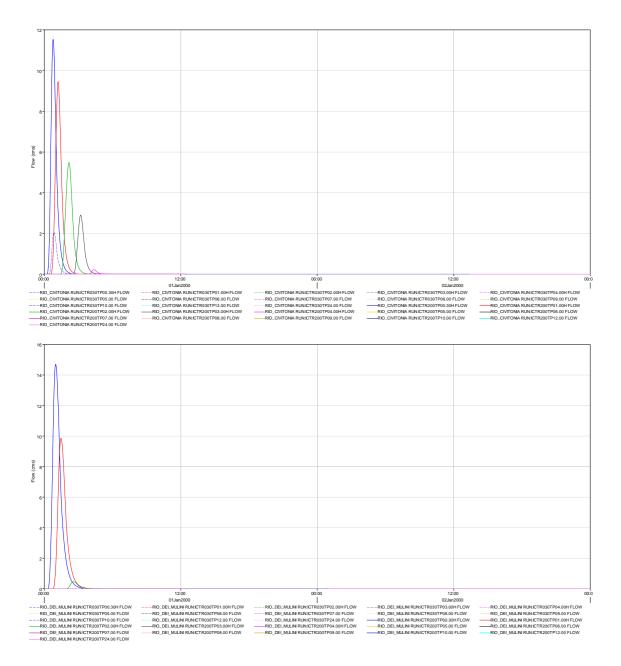


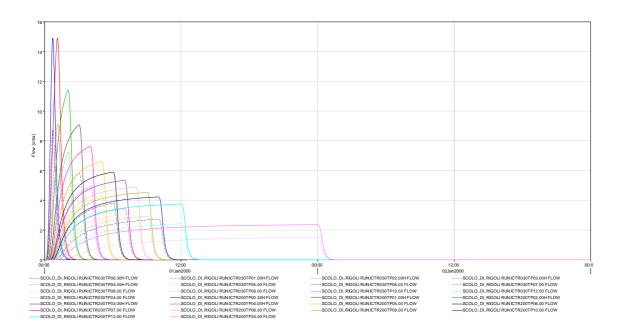











Per quanto riguarda il modello del Canale Demaniale gli idrogrammi sono i seguenti

